Welcome to RumorMill
A directory and implementation of SOTA bias detection research papers, all in one place.
🛠️ RumorMill Toolkit
🧠 Learn
Last updated
A directory and implementation of SOTA bias detection research papers, all in one place.
Last updated
pip install the-fairly-projectfrom fairly import TextAnalyzer
analyzer = TextAnalyzer(bias="ternary", classes=True, top_k_classes=3, ner="gus")
result = analyzer.analyze("Tall people are so clumsy."){
'text': {
'text': 'Tall people are so clumsy.',
'label': 'Slightly Biased',
'score': 0.6829080581665039,
'aspects': {
'physical': 0.9650779366493225,
'gender': 0.024978743866086006,
'socioeconomic': 0.023334791883826256
}
},
'ner': [
{'token': 'tall', 'labels': ['B-STEREO', 'B-GEN', 'B-UNFAIR']},
{'token': 'people', 'labels': ['I-STEREO', 'I-GEN', 'I-UNFAIR']},
{'token': 'are', 'labels': ['I-STEREO']},
{'token': 'so', 'labels': ['I-STEREO']},
{'token': 'clumsy', 'labels': ['I-STEREO', 'B-UNFAIR', 'I-UNFAIR']},
{'token': '.', 'labels': ['I-STEREO', 'I-UNFAIR']}
]
}